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“Is it possible to solve minimum set cover in sub-linear time?”
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 𝑂(𝑚𝑘2 + 𝑛𝑘2) (can be improved to 𝑂(𝑚 + 𝑛𝑘))

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

𝒏 = number of elements     𝒎 = number of sets       𝒌 = size of the optimal solution
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1. Two simple components used for coverage problems in massive data models.
• Set Sampling
• Element Sampling

2. The algorithm overview



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

How we use the lemma: set ℓ = 𝑂(𝑘)



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2        3         2        1          1        3         2         1         3         2

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2        3         2        1          1        3         2         1         3         2



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 

elements with degree at least 
m log 𝑛

ℓ
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• We only need to worry about low degree elements.
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Element Sampling: Sampling Θ(
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𝛿
) elements uniformly at 
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number of queries.



Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2  𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 −  𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚   
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2  Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements     𝒎 = number of sets       𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers 
the universe.



Part two: lower bound

Theorem: Any randomized algorithm that with probability at least 
2/3 distinguishes whether the minimum Set Cover size is 2 or at 
least 3 requires  𝛀(𝒎𝒏) number of queries.
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1. Construct a median instance 𝐼∗

• Minimum Set Cover Size is 3
2. Randomized Procedure on 𝐼∗ to get a modified instance 𝐼

• Minimum Set Cover Size is 2
• 𝐼∗ and 𝐼 only differ in a few positions
• The differences are distributed almost uniformly at 

random

3. Any algorithm that can detect  these two cases requires to 
query at least  Ω(𝑚𝑛) queries.
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The Median Instance
Construction: is randomized. For every 𝑆, 𝑒 the set 𝑆 contains 𝑒 with 

probability 1 − 𝑝0 where 𝑝0 =
9 log 𝑚

𝑛

Properties: by Chernoff, most of such instances have the following properties:

Take one such instance 𝐼∗ with the above properties

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is 𝑂 log𝑚
3. The intersection is at least Ω(𝑛)

4. For each element, the number of sets not covering it is at most 6𝑚
log𝑚

𝑛

5. For any pair of elements the number of sets containing only the first element is 

at least 
𝑚 9 log𝑚

4√𝑛

6. For any three sets, the number of elements in the first two but not in the third 

one is at least 6 𝑛 log𝑚



The Median Instance
Se

ts

Elements

𝑒 ∈ 𝑆

𝑒 ∉ 𝑆
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+
Two in SetOf oracles



• Median Instance
• Pick two Sets 

Uniformly at Random

𝑆1

𝑆2

The Randomized Procedure



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements 

that are not covered

The Randomized Procedure

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the 

elements that are 
covered by both

The Randomized Procedure

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

The Randomized Procedure

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

The Randomized Procedure

𝑆1

𝑆2

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆1

𝑆2

• By Property 2 of median instance: 
 the total number of uncovered elements is 

𝑂 log𝑚
• Thus in total only 𝑂 log𝑚 positions have 

changed. 
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