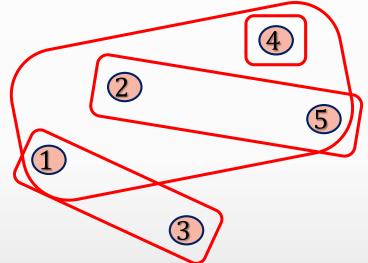
Set Cover in Sub-linear Time

Piotr Indyk MIT Sepideh Mahabadi Columbia University Ronitt Rubinfeld MIT/TAU

Ali Vakilian MIT Anak Yodpinyanee MIT

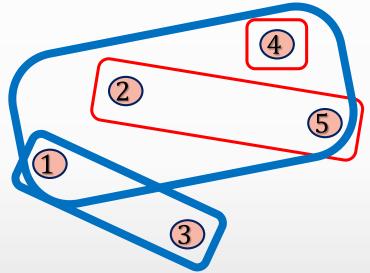
Input: Collection \mathcal{F} of sets S_1, \dots, S_m , each a subset of $\mathcal{U} = \{1, \dots, n\}$



Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- $\mathcal C$ covers $\mathcal U$
- $|\mathcal{C}|$ is minimized



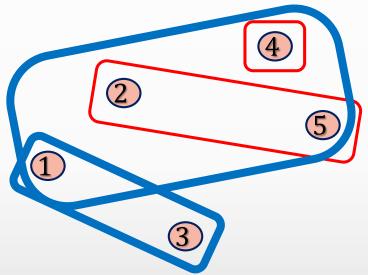
Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:

• NP-hard



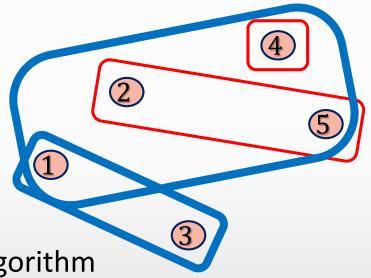
Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset C of \mathcal{F} such that:

- $\mathcal C$ covers $\mathcal U$
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy (ln n)-approximation algorithm



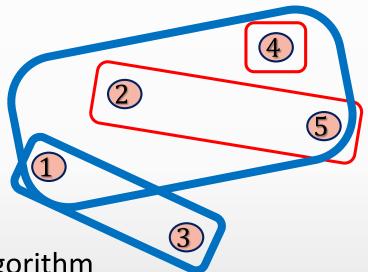
Input: Collection \mathcal{F} of sets S_1, \dots, S_m , each a subset of $\mathcal{U} = \{1, \dots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy (ln n)-approximation algorithm
- Can't do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]



Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset C of \mathcal{F} such that:

- $\mathcal C$ covers $\mathcal U$
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy (ln n)-approximation algorithm
- Can't do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

"Is it possible to solve minimum set cover in **sub-linear time**?"

Data Access Model ?

Data Access Model [NO'08,YYI'12]

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

• Incidence list in (sub-linear) algorithms for graphs

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Prior Results

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Prior Results

[Nguyen, Onak'08][Yoshida, Yamamoto, Ito'12]

Constant queries, if degree is constant

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Prior Results

[Nguyen, Onak'08][Yoshida, Yamamoto, Ito'12]

Constant queries, if degree is constant

[Koufogiannakis, Young'14][Grigoriadis, Kachiyan'95]:

• Find $(1 + \epsilon)$ -approximate **fractional solution**, then perform **randomized rounding** to achieve $O(\log n)$ -approximation

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Prior Results

[Nguyen, Onak'08][Yoshida, Yamamoto, Ito'12]

Constant queries, if degree is constant

[Koufogiannakis, Young'14][Grigoriadis, Kachiyan'95]:

- Find $(1 + \epsilon)$ -approximate **fractional solution**, then perform **randomized rounding** to achieve $O(\log n)$ -approximation
- $O(mk^2 + nk^2)$ (can be improved to O(m + nk))

n = number of *elements* m = number of *sets* k = size of the optimal solution

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\widetilde{O}\left(rac{mn}{k} ight)$
		$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(rac{n}{k} ight)^{rac{1}{2lpha}} ight)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

ρ = approximation factor for offline **Set Cover**

n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\widetilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification		$k \le n/2$	$\widetilde{\Omega}(nk)$

ρ = approximation factor for offline **Set Cover**

n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\widetilde{O}\left(rac{mn}{k} ight)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\widetilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\widetilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	-	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}} + nk\right)$
	$\rho + 1$	—	$\widetilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}} + nk\right)$
	$\rho + 1$	_	$\tilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(rac{mn}{k} ight)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

Part one: upper bound

Theorem: There exists an algorithm that with high probability finds an $O(\rho\alpha)$ -approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

Part one: upper bound

Theorem: There exists an algorithm that with high probability finds an $O(\rho\alpha)$ -approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

- 1. Two simple components used for coverage problems in massive data models.
 - Set Sampling
 - Element Sampling
- 2. The algorithm overview

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

We only need to worry about low degree elements.

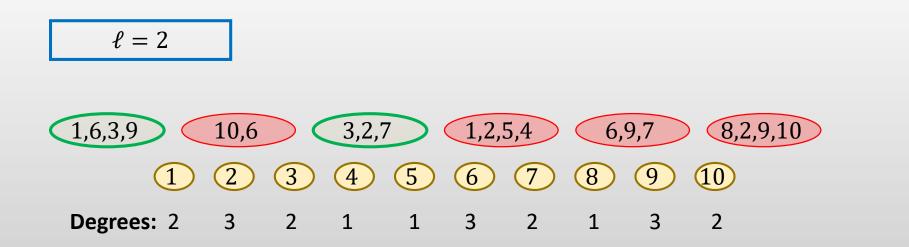
How we use the lemma: set $\ell = O(k)$

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

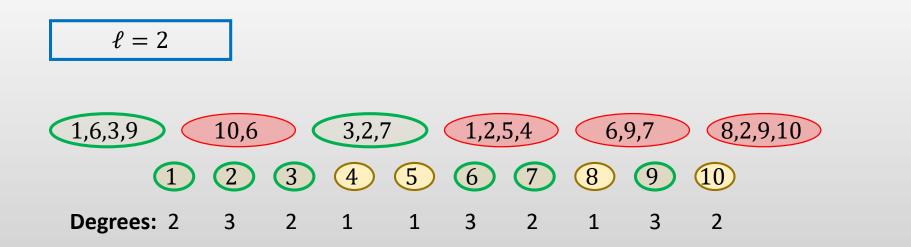
$$\ell = 2$$

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10
1 2 3 4 5 6 7 8 9 10

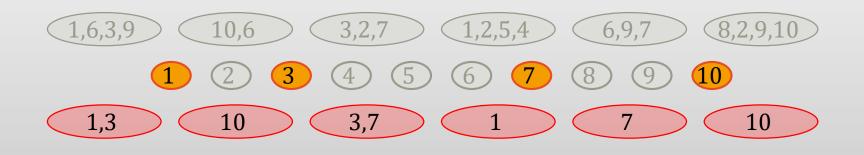
Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

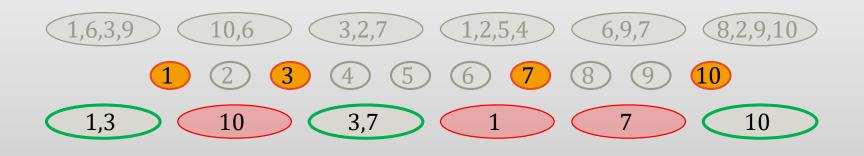


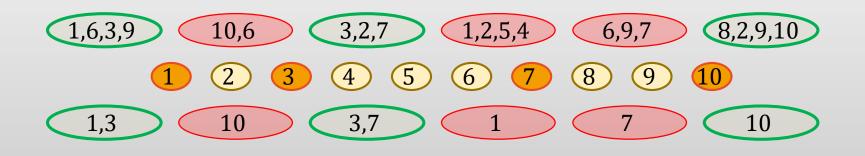
Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.



Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.







Component II: element sampling

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.

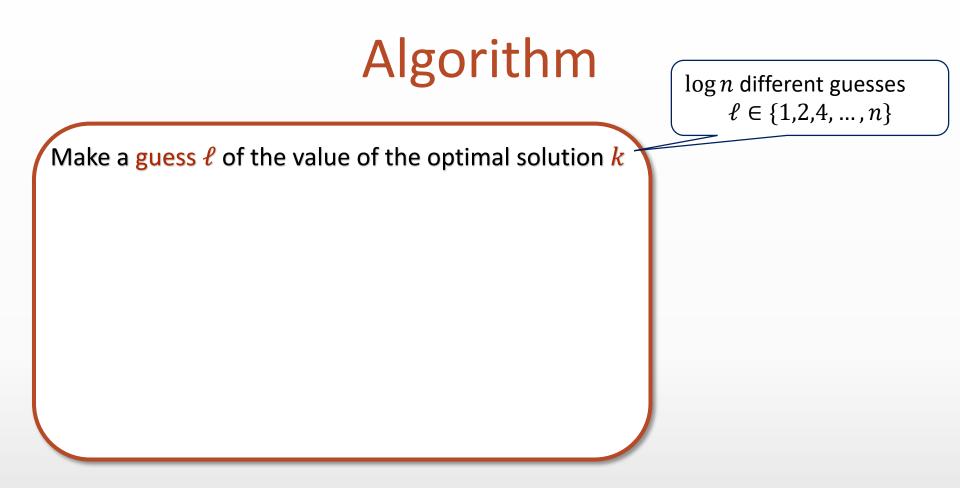
Component II: element sampling

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.

Component II: element sampling

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\delta})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.

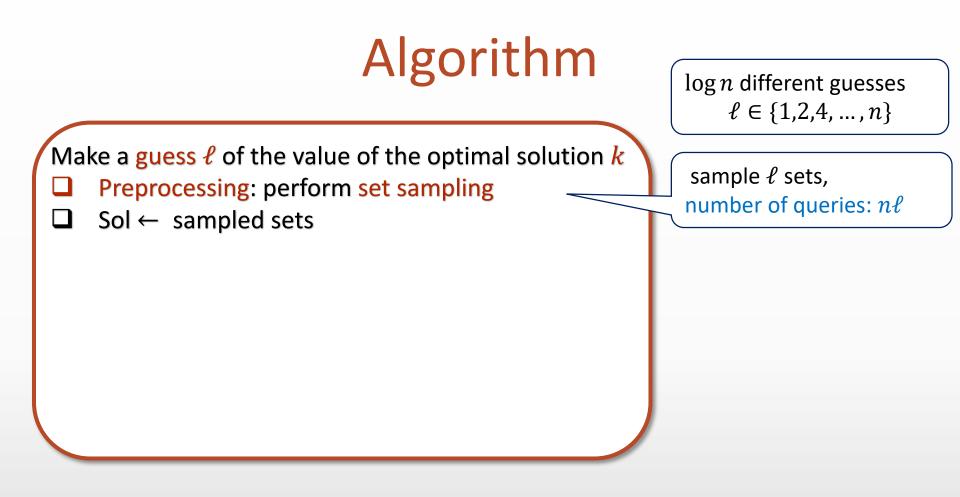
Make a guess ℓ of the value of the optimal solution k



 $\log n$ different guesses $\ell \in \{1, 2, 4, \dots, n\}$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- □ Sol \leftarrow sampled sets



Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\rho}$ are covered w.h.p.

log *n* different guesses $\ell \in \{1, 2, 4, ..., n\}$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol

sample ℓ sets, number of queries: $n\ell$

 $\log n \text{ different guesses} \\ \ell \in \{1, 2, 4, \dots, n\}$

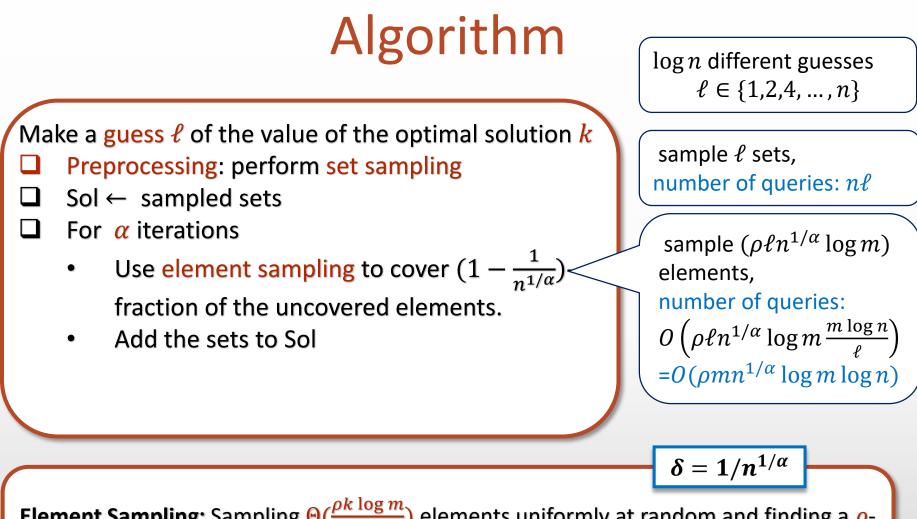
Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol

sample ℓ sets, number of queries: $n\ell$

 $\delta = 1/n^{1/\alpha}$

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\delta})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.



Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\delta})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

log *n* different guesses $\ell \in \{1, 2, 4, ..., n\}$

sample ℓ sets, number of queries: $n\ell$

sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\rho}\right)$ $=O(\rho m n^{1/\alpha} \log m \log n)$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

 $\log n \text{ different guesses} \\ \ell \in \{1, 2, 4, \dots, n\}$

sample ℓ sets, number of queries: $n\ell$

sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\rho}\right)$ $=O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n \ell$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.
- □ If all elements are covered, report Sol

 $\log n$ different guesses $\ell \in \{1, 2, 4, \dots, n\}$

sample ℓ sets, number of queries: $n\ell$

sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\rho}\right)$ $=O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n \ell$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **For** α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

If all elements are covered, report Sol

log *n* different guesses $\ell \in \{1, 2, 4, ..., n\}$

sample ℓ sets, number of queries: $n\ell$

sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\rho}\right)$ $=O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n \ell$

Theorem: There exists an algorithm that with high probability finds an $O(\rho\alpha)$ -approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

Results

Problem	Approximation	Constraints	Query Complexity
Set Cover	$\alpha \rho + 1$	$\alpha \ge 2$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$
	$\rho + 1$	_	$\tilde{O}\left(\frac{mn}{k}\right)$
	α	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2lpha}} ight)$
	α	$\alpha \le 1.01$ $k = O(n/\log m)$	$\widetilde{\Omega}\left(\frac{mn}{k}\right)$
Cover Verification	—	$k \le n/2$	$\widetilde{\Omega}(nk)$

Cover Verification: given a set system, verify whether a given sub-collection of sets covers the universe.

- *ρ* = approximation factor for offline **Set Cover**
- n = number of *elements* m = number of *sets*

k = Size of the optimal Solution

Part two: lower bound

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.

High Level Approach

- 1. Construct a median instance I^*
 - Minimum Set Cover Size is 3

High Level Approach

- 1. Construct a median instance I^*
 - Minimum Set Cover Size is 3
- 2. Randomized Procedure on I^* to get a modified instance I
 - Minimum Set Cover Size is 2
 - *I*^{*} and *I* only differ in a few positions
 - The differences are distributed almost uniformly at random

High Level Approach

- 1. Construct a median instance I^*
 - Minimum Set Cover Size is 3
- 2. Randomized Procedure on I^* to get a modified instance I
 - Minimum Set Cover Size is 2
 - *I*^{*} and *I* only differ in a few positions
 - The differences are distributed almost uniformly at random
- 3. Any algorithm that can detect these two cases requires to query at least $\widetilde{\Omega}(mn)$ queries.

Construction: is randomized. For every *S*, *e* the set *S* contains *e* with

probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Construction: is randomized. For every *S*, *e* the set *S* contains *e* with

probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Properties: by Chernoff, most of such instances have the following properties:

No 2 sets cover all the elements

- For any two sets the number of uncovered elements is $O(\log m)$ The intersection is at least $\Omega(n)$
- For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
- For any pair of elements the number of sets containing only the first element is at least $\frac{m\sqrt{9 \log m}}{4\sqrt{n}}$ 6. For any three sets, the number of elements in the first two but not in the third
- one is at least $6\sqrt{n\log m}$

Construction: is randomized. For every *S*, *e* the set *S* contains *e* with

probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Properties: by Chernoff, most of such instances have the following properties:

- 1. No 2 sets cover all the elements
- 2. For any two sets the number of uncovered elements is $O(\log m)$
- 3. The intersection is at least $\Omega(n)$
- 4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
- For any pair of elements the number of sets containing only the first element is at least ^{m√9 log m}/_{4√n}
 For any three sets, the number of elements in the first two but not in the third
- 6. For any three sets, the number of elements in the first two but not in the third one is at least $6\sqrt{n\log m}$

Construction: is randomized. For every *S*, *e* the set *S* contains *e* with

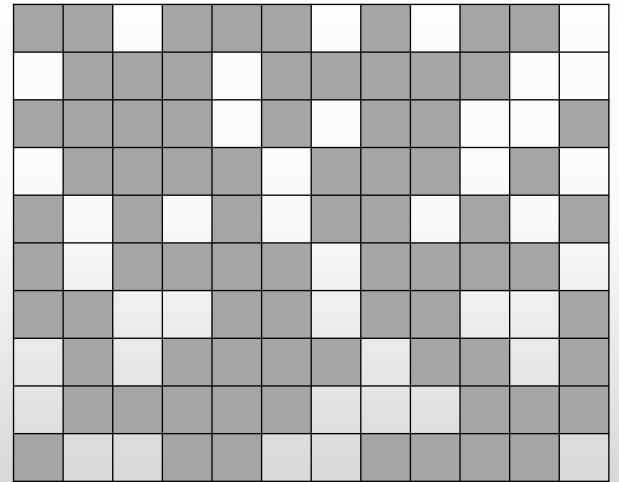
probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Properties: by Chernoff, most of such instances have the following properties:

- 1. No 2 sets cover all the elements
- 2. For any two sets the number of uncovered elements is $O(\log m)$
- 3. The intersection is at least $\Omega(n)$
- 4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
- 5. For any pair of elements the number of sets containing only the first element is at least $\frac{m\sqrt{9\log m}}{4\sqrt{n}}$
- 6. For any three sets, the number of elements in the first two but not in the third one is at least $6\sqrt{n\log m}$

Take one such instance I^* with the above properties

Elements



Sets

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

 $S_2 = \{e_2, e_4\}$

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2

$$U = \{ e_1, e_2, e_3, e_4 \}$$

$$S_1 = \{e_2, e_3\}$$

 $S_2 = \{e_2, e_4\} \leftarrow e_1$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2

 S_1 S_2

• Remove an element $e_2 \in S_2 \cap S_1$ from S_2

$$U = \{e_1, e_2, e_3, e_4\}$$
$$= \{e_2, e_3\}$$
$$= \{e_2, e_4\} \leftarrow e_1$$
$$\rightarrow e_2$$

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\}$$

$$S_3 = \{e_4, e_1\}$$

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\}$$

$$S_3 = \{e_4, e_1\}$$

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_3\}$$

$$S_2 = \{e_1, e_4\}$$

$$S_3 = \{e_4, e_2\}$$

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$$U = \{e_1, e_2, e_3, e_4\}$$
 Modified instance

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\}$$

$$S_3 = \{e_4, e_1\}$$
 Swap

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_1, e_4\}$$

$$S_3 = \{e_4, e_2\}$$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$$U = \{e_1, e_2, e_3, e_4\}$$
 Modified instance

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\}$$

$$S_3 = \{e_4, e_1\}$$
 Swap

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_1, e_4\}$$

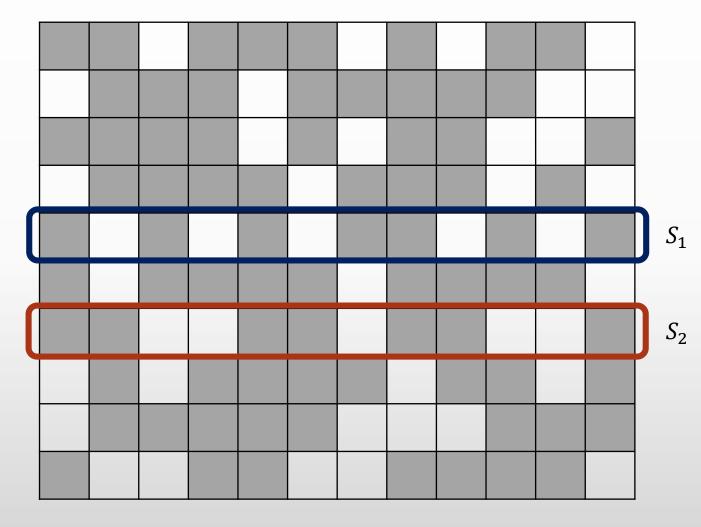
$$S_3 = \{e_4, e_1\}$$

Only four positions changes in the query access model.

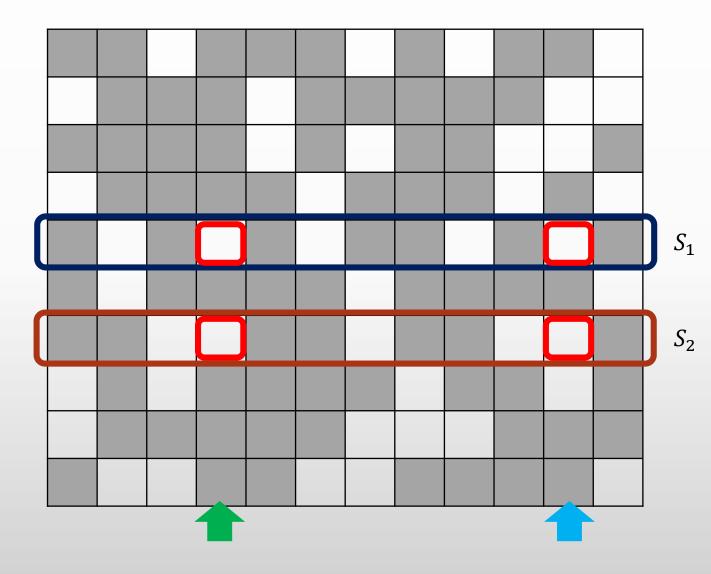
- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2



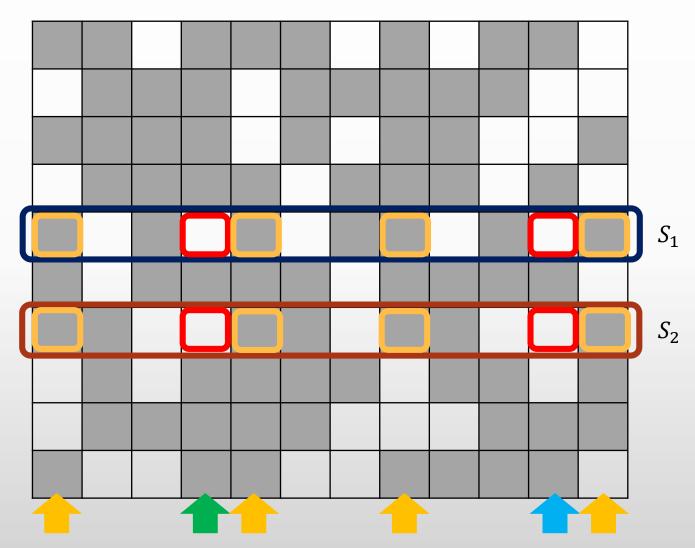
- Median Instance
- Pick two Sets Uniformly at Random



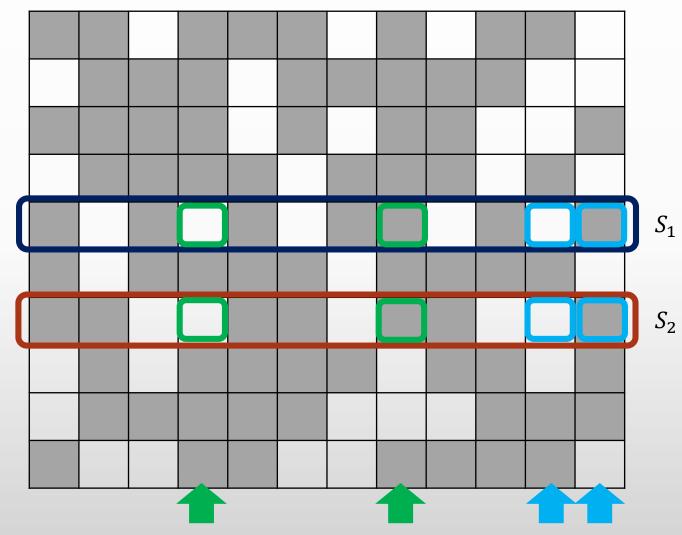
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered



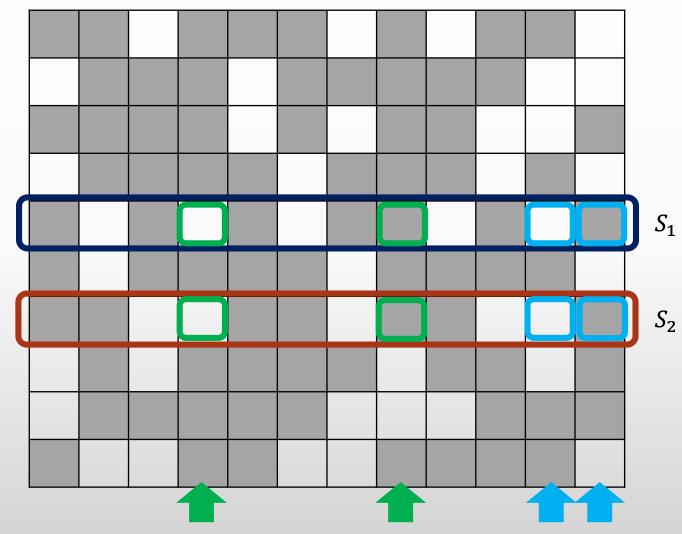
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both



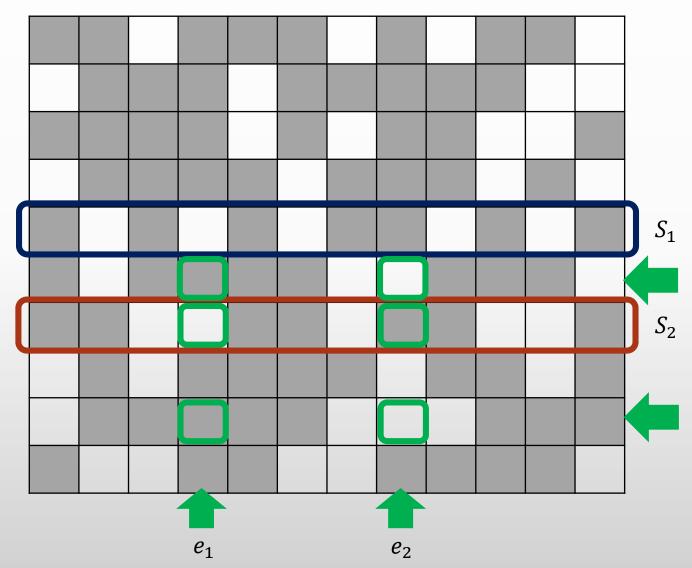
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element



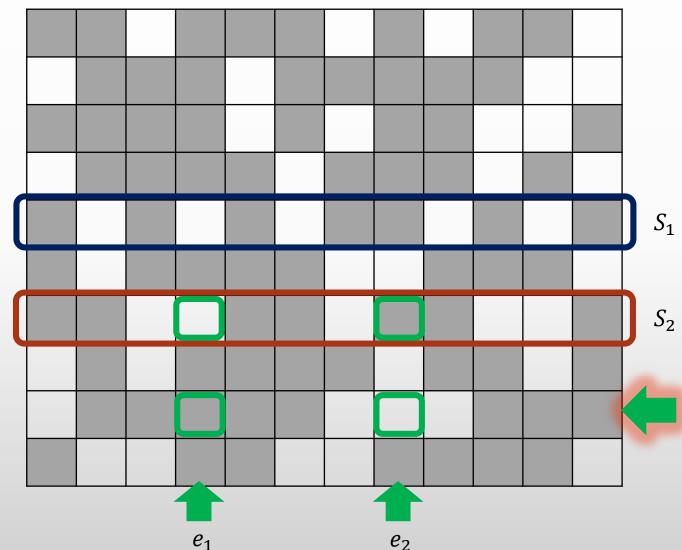
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element



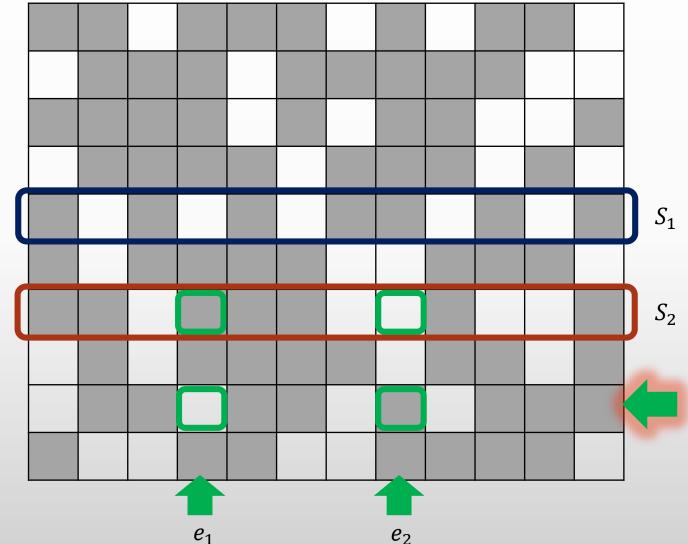
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element



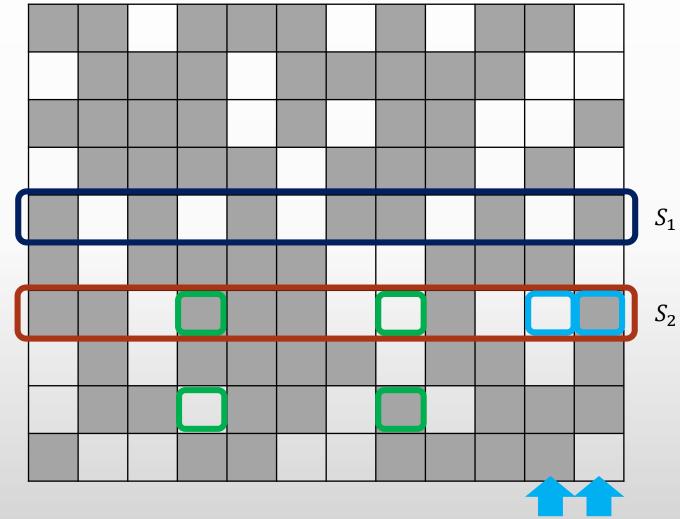
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set



- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

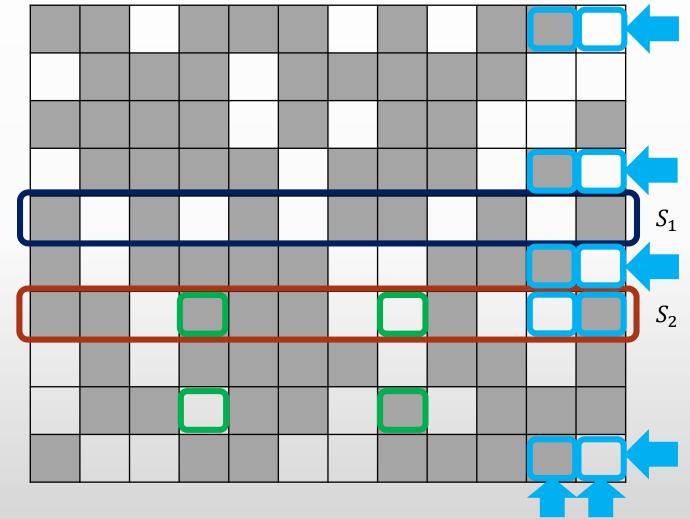


- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



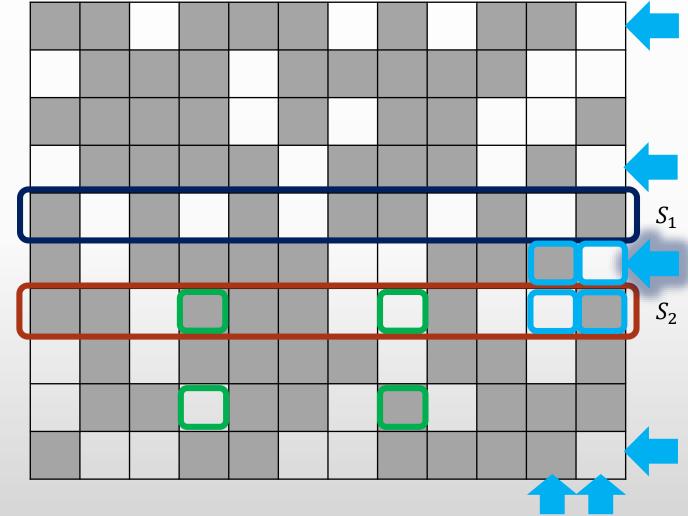
 $e_1 \quad e_2$

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



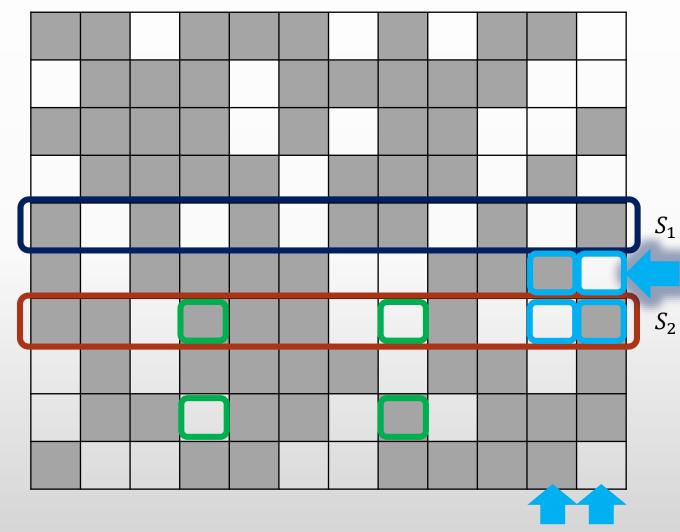
 e_1

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



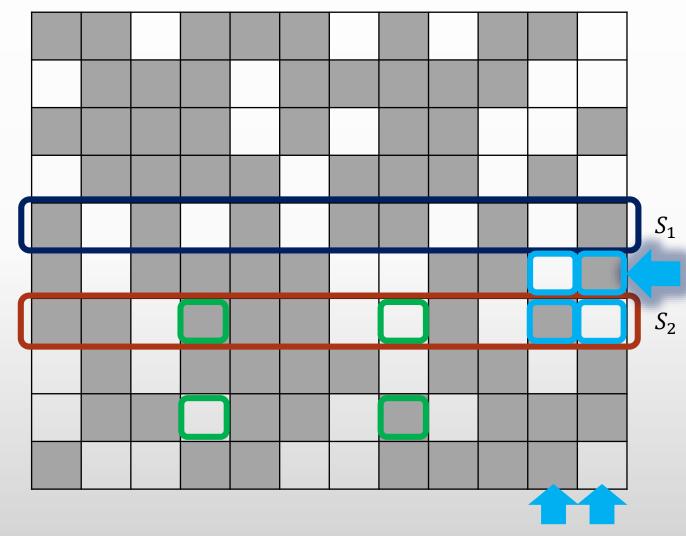
 e_1

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



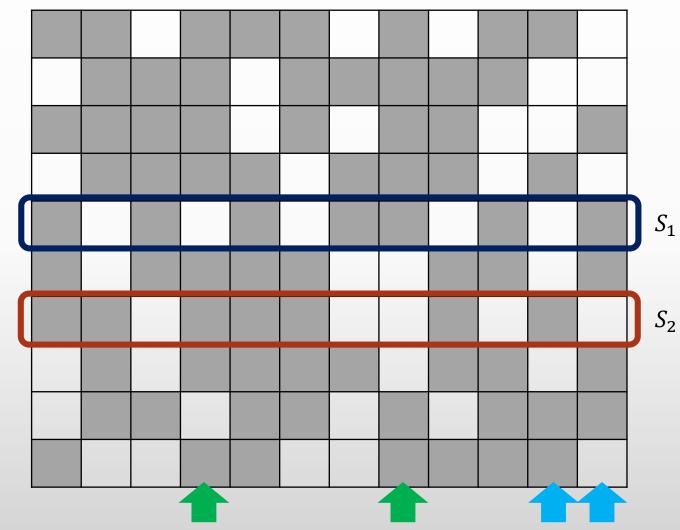
 e_1

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

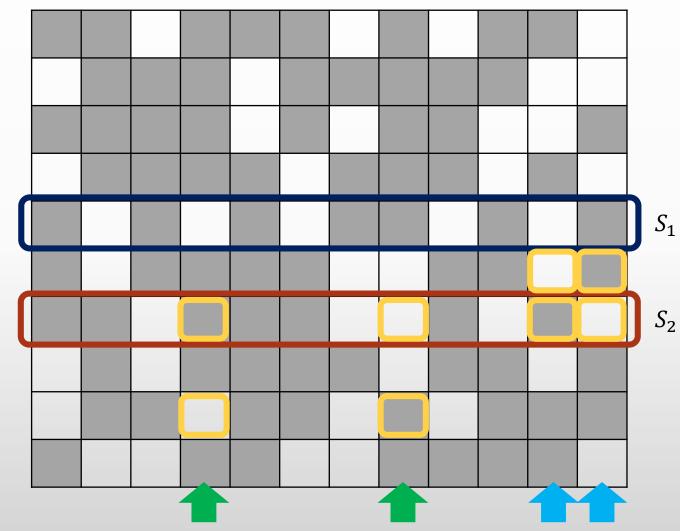


 e_1

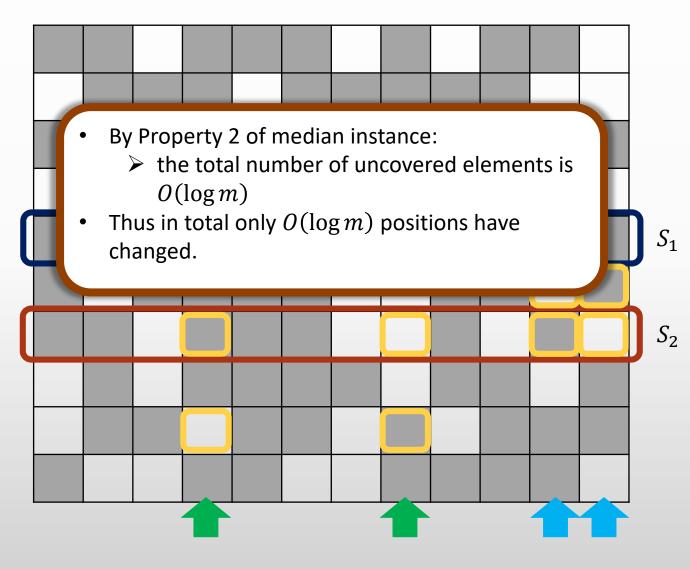
- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap



Overall Argument

Lemma: For any element *e* and any set *S*, the probability that pair participate in a swap is almost uniform, i.e., $O(\frac{\log m}{mn})$.

Using other properties of the median instances

Input:

- W.p. $\frac{1}{2}$ the input is the median instance I^*
- W.p. $\frac{1}{2}$ the input is a randomly generated modified instance I

Overall Argument

Lemma: For any element *e* and any set *S*, the probability that pair participate in a swap is almost uniform, i.e., $O(\frac{\log m}{mn})$.

Using other properties of the median instances

Input:

- W.p. $\frac{1}{2}$ the input is the median instance I^*
- W.p. ½ the input is a randomly generated modified instance I

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.

Open Problems

Problem	Approximation	Query Complexity	Constraints
Set Cover	$\alpha \rho + 1$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$	$\alpha \ge 2$
	$\rho + 1$	$\widetilde{O}\left(\frac{mn}{k}\right)$	_
	α	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$
	α	$\widetilde{\Omega}\left(\frac{mn}{k}\right)$	$\alpha \le 1.01$ $k = O(n/\log m)$
Cover Verification	_	$\widetilde{\Omega}(nk)$	$k \le n/2$

• Prove a lower bound of $\Omega(nk)$ for the set cover problem as well

Open Problems

Problem	Approximation	Query Complexity	Constraints
Set Cover	$\alpha \rho + 1$	$\tilde{O}\left(m\left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}}+nk\right)$	$\alpha \ge 2$
	$\rho + 1$	$\widetilde{O}\left(\frac{mn}{k}\right)$	_
	α	$\widetilde{\Omega}\left(m \left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$
	α	$\widetilde{\Omega}\left(rac{mn}{k} ight)$	$\alpha \le 1.01$ $k = O(n/\log m)$
Cover Verification	—	$\widetilde{\Omega}(nk)$	$k \le n/2$

- Prove a lower bound of $\Omega(nk)$ for the set cover problem as well
- Similar results for the weighted set cover?

Open Problems

			Yer You
Problem	Approximation	Query Complexity	uestions?
Set Cover	$\alpha \rho + 1$	$\tilde{O}\left(m \left(\frac{n}{k}\right)^{\frac{1}{\alpha-1}} + nk\right)$	$\alpha \ge 2$
	$\rho + 1$	$\widetilde{O}\left(\frac{mn}{k}\right)$	_
	α	$\widetilde{\Omega}\left(m\left(\frac{n}{k}\right)^{\frac{1}{2\alpha}}\right)$	$k \le \left(\frac{n}{\log m}\right)^{\frac{1}{4\alpha + 1}}$
	α	$\widetilde{\Omega}\left(\frac{mn}{k}\right)$	$\alpha \le 1.01$ $k = O(n/\log m)$
Cover Verification	—	$\widetilde{\Omega}(nk)$	$k \le n/2$

- Prove a lower bound of $\Omega(nk)$ for the set cover problem as well
- Similar results for the weighted set cover?