
Set Cover in Sub-linear Time

Piotr Indyk
MIT

Sepideh Mahabadi
Columbia University

Ronitt Rubinfeld
MIT/TAU

Ali Vakilian
MIT

Anak Yodpinyanee
MIT

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

1

4

5
2

3

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

Output: a subset 𝒞 of ℱ such that:

• 𝒞 covers 𝒰

• |𝒞| is minimized
1

4

5
2

3

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

Output: a subset 𝒞 of ℱ such that:

• 𝒞 covers 𝒰

• |𝒞| is minimized

Complexity:

• NP-hard

1

4

5
2

3

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

Output: a subset 𝒞 of ℱ such that:

• 𝒞 covers 𝒰

• |𝒞| is minimized

Complexity:

• NP-hard

• Greedy (ln 𝑛)-approximation algorithm

1

4

5
2

3

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

Output: a subset 𝒞 of ℱ such that:

• 𝒞 covers 𝒰

• |𝒞| is minimized

Complexity:

• NP-hard

• Greedy (ln 𝑛)-approximation algorithm

• Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

1

4

5
2

3

Set Cover Problem

Input: Collection ℱ of sets 𝑆1, … , 𝑆𝑚, each a subset of 𝒰 =
{1,… , 𝑛}

Output: a subset 𝒞 of ℱ such that:

• 𝒞 covers 𝒰

• |𝒞| is minimized

Complexity:

• NP-hard

• Greedy (ln 𝑛)-approximation algorithm

• Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

1

4

5
2

3

“Is it possible to solve minimum set cover in sub-linear time?”

Sub-linear Time Set Cover

Data Access Model ?

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12] EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

• Sublinear in 𝒎𝒏

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

• Sublinear in 𝒎𝒏

Prior Results

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

• Sublinear in 𝒎𝒏

Prior Results
[Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]

 Constant queries, if degree is constant

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

• Sublinear in 𝒎𝒏

Prior Results
[Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]

 Constant queries, if degree is constant

[Koufogiannakis, Young’14][Grigoriadis, Kachiyan’95]:

 Find (1 + 𝜖)-approximate fractional solution, then perform
randomized rounding to achieve 𝑂(log 𝑛)-approximation

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order

• Incidence list in (sub-linear) algorithms for graphs

• Sublinear in 𝒎𝒏

Prior Results
[Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]

 Constant queries, if degree is constant

[Koufogiannakis, Young’14][Grigoriadis, Kachiyan’95]:

 Find (1 + 𝜖)-approximate fractional solution, then perform
randomized rounding to achieve 𝑂(log 𝑛)-approximation

 𝑂(𝑚𝑘2 + 𝑛𝑘2) (can be improved to 𝑂(𝑚 + 𝑛𝑘))

EltOf(𝑺, 𝒊): 𝑖th element in 𝑺

SetOf(𝒆, 𝒋): 𝑗th set containing 𝒆

𝒏 = number of elements 𝒎 = number of sets 𝒌 = size of the optimal solution

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Part one: upper bound

Theorem: There exists an algorithm that with high probability

finds an O(𝜌𝛼)-approximate cover which uses 𝑂(𝒎𝒏𝟏/𝜶 + 𝒏𝒌)
number of queries.

Part one: upper bound

Theorem: There exists an algorithm that with high probability

finds an O(𝜌𝛼)-approximate cover which uses 𝑂(𝒎𝒏𝟏/𝜶 + 𝒏𝒌)
number of queries.

1. Two simple components used for coverage problems in massive data models.
• Set Sampling
• Element Sampling

2. The algorithm overview

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

How we use the lemma: set ℓ = 𝑂(𝑘)

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2 3 2 1 1 3 2 1 3 2

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2 3 2 1 1 3 2 1 3 2

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all

elements with degree at least
m log 𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

10,6 1,2,5,4 8,2,9,10

4 5 8 10

6,9,7

Degrees: 2 3 2 1 1 3 2 1 3 2

Component II: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1,3 10 3,7 1 107

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,3 10 3,7 1 107

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1,3 10 3,7 1 107

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

10,6 1,2,5,4 6,9,7

4 5

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

Element Sampling: Sampling Θ(
𝜌𝑘 log 𝑚

𝛿
) elements uniformly at

random and finding a 𝜌-approximate cover for the sampled
elements, will cover (1 − 𝛿) fraction of the original elements
w.h.p.

10,6 1,2,5,4 6,9,7

4 5

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at

least
m log 𝑛

ℓ
are covered w.h.p.

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

Element Sampling: Sampling Θ(
𝜌𝑘 log 𝑚

𝛿
) elements uniformly at random and finding a 𝜌-

approximate cover for the sampled elements, will cover (1 − 𝛿) fraction of the original
elements w.h.p.

𝜹 = 𝟏/𝒏𝟏/𝜶

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

sample (𝜌ℓ𝑛1/𝛼 log𝑚)
elements,
number of queries:

𝑂 𝜌ℓ𝑛1/𝛼 log𝑚
𝑚 log 𝑛

ℓ

=𝑂(𝜌𝑚𝑛1/𝛼 log𝑚 log𝑛)

Element Sampling: Sampling Θ(
𝜌𝑘 log 𝑚

𝛿
) elements uniformly at random and finding a 𝜌-

approximate cover for the sampled elements, will cover (1 − 𝛿) fraction of the original
elements w.h.p.

𝜹 = 𝟏/𝒏𝟏/𝜶

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

sample (𝜌ℓ𝑛1/𝛼 log𝑚)
elements,
number of queries:

𝑂 𝜌ℓ𝑛1/𝛼 log𝑚
𝑚 log 𝑛

ℓ

=𝑂(𝜌𝑚𝑛1/𝛼 log𝑚 log𝑛)

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

number of queries: 𝜌𝑛ℓ

sample (𝜌ℓ𝑛1/𝛼 log𝑚)
elements,
number of queries:

𝑂 𝜌ℓ𝑛1/𝛼 log𝑚
𝑚 log 𝑛

ℓ

=𝑂(𝜌𝑚𝑛1/𝛼 log𝑚 log𝑛)

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

 If all elements are covered, report Sol

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

number of queries: 𝜌𝑛ℓ

sample (𝜌ℓ𝑛1/𝛼 log𝑚)
elements,
number of queries:

𝑂 𝜌ℓ𝑛1/𝛼 log𝑚
𝑚 log 𝑛

ℓ

=𝑂(𝜌𝑚𝑛1/𝛼 log𝑚 log𝑛)

Algorithm

Make a guess ℓ of the value of the optimal solution 𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 𝛼 iterations

• Use element sampling to cover (1 −
1

𝑛1/𝛼
)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

 If all elements are covered, report Sol

log 𝑛 different guesses
ℓ ∈ {1,2,4, … , 𝑛}

sample ℓ sets,
number of queries: 𝑛ℓ

number of queries: 𝜌𝑛ℓ

sample (𝜌ℓ𝑛1/𝛼 log𝑚)
elements,
number of queries:

𝑂 𝜌ℓ𝑛1/𝛼 log𝑚
𝑚 log 𝑛

ℓ

=𝑂(𝜌𝑚𝑛1/𝛼 log𝑚 log𝑛)

Theorem: There exists an algorithm that with high probability

finds an O(𝜌𝛼)-approximate cover which uses 𝑂(𝒎𝒏𝟏/𝜶 + 𝒏𝒌)
number of queries.

Results

Problem Approximation Constraints Query Complexity

Set Cover

𝛼𝜌 + 1 𝛼 ≥ 2 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘

𝜌 + 1 − 𝑂
𝑚𝑛

𝑘

𝛼 𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝛼
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)
 Ω

𝑚𝑛

𝑘

Cover Verification − 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘)

𝝆 = approximation factor for offline Set Cover

𝒏 = number of elements 𝒎 = number of sets 𝒌 = Size of the optimal Solution

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.

Part two: lower bound

Theorem: Any randomized algorithm that with probability at least
2/3 distinguishes whether the minimum Set Cover size is 2 or at
least 3 requires 𝛀(𝒎𝒏) number of queries.

High Level Approach

1. Construct a median instance 𝐼∗

• Minimum Set Cover Size is 3

High Level Approach

1. Construct a median instance 𝐼∗

• Minimum Set Cover Size is 3
2. Randomized Procedure on 𝐼∗ to get a modified instance 𝐼

• Minimum Set Cover Size is 2
• 𝐼∗ and 𝐼 only differ in a few positions
• The differences are distributed almost uniformly at

random

High Level Approach

1. Construct a median instance 𝐼∗

• Minimum Set Cover Size is 3
2. Randomized Procedure on 𝐼∗ to get a modified instance 𝐼

• Minimum Set Cover Size is 2
• 𝐼∗ and 𝐼 only differ in a few positions
• The differences are distributed almost uniformly at

random

3. Any algorithm that can detect these two cases requires to
query at least Ω(𝑚𝑛) queries.

The Median Instance
Construction: is randomized. For every 𝑆, 𝑒 the set 𝑆 contains 𝑒 with

probability 1 − 𝑝0 where 𝑝0 =
9 log 𝑚

𝑛

The Median Instance
Construction: is randomized. For every 𝑆, 𝑒 the set 𝑆 contains 𝑒 with

probability 1 − 𝑝0 where 𝑝0 =
9 log 𝑚

𝑛

Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is 𝑂 log𝑚
3. The intersection is at least Ω(𝑛)

4. For each element, the number of sets not covering it is at most 6𝑚
log𝑚

𝑛

5. For any pair of elements the number of sets containing only the first element is

at least
𝑚 9 log𝑚

4√𝑛

6. For any three sets, the number of elements in the first two but not in the third

one is at least 6 𝑛 log𝑚

The Median Instance
Construction: is randomized. For every 𝑆, 𝑒 the set 𝑆 contains 𝑒 with

probability 1 − 𝑝0 where 𝑝0 =
9 log 𝑚

𝑛

Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is 𝑂 log𝑚
3. The intersection is at least Ω(𝑛)

4. For each element, the number of sets not covering it is at most 6𝑚
log𝑚

𝑛

5. For any pair of elements the number of sets containing only the first element is

at least
𝑚 9 log𝑚

4√𝑛

6. For any three sets, the number of elements in the first two but not in the third

one is at least 6 𝑛 log𝑚

The Median Instance
Construction: is randomized. For every 𝑆, 𝑒 the set 𝑆 contains 𝑒 with

probability 1 − 𝑝0 where 𝑝0 =
9 log 𝑚

𝑛

Properties: by Chernoff, most of such instances have the following properties:

Take one such instance 𝐼∗ with the above properties

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is 𝑂 log𝑚
3. The intersection is at least Ω(𝑛)

4. For each element, the number of sets not covering it is at most 6𝑚
log𝑚

𝑛

5. For any pair of elements the number of sets containing only the first element is

at least
𝑚 9 log𝑚

4√𝑛

6. For any three sets, the number of elements in the first two but not in the third

one is at least 6 𝑛 log𝑚

The Median Instance
Se

ts

Elements

𝑒 ∈ 𝑆

𝑒 ∉ 𝑆

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒 𝒆𝟏

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒 𝒆𝟏

𝒆𝟐

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2
• Pick a random set 𝑆3 that contains 𝑒1 but not 𝑒2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟏

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2
• Pick a random set 𝑆3 that contains 𝑒1 but not 𝑒2
• 𝑆2 and 𝑆3 swap 𝑒1 and 𝑒2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟏, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟐

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟏

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2
• Pick a random set 𝑆3 that contains 𝑒1 but not 𝑒2
• 𝑆2 and 𝑆3 swap 𝑒1 and 𝑒2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟏, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟐

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟏

Modified instance

Swap

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2
• Pick a random set 𝑆3 that contains 𝑒1 but not 𝑒2
• 𝑆2 and 𝑆3 swap 𝑒1 and 𝑒2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟏, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟐

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟏

Only four positions changes in the query access model.

Modified instance

Swap

Generating a Modified Instance

Pick two random sets 𝑆1 and 𝑆2 and turn them into a set cover.
How?
• For each uncovered element 𝑒1 ∈ 𝑈 ∖ 𝑆1 ∪ 𝑆2 ,

• Add 𝑒1 to 𝑆2
• Remove an element 𝑒2 ∈ 𝑆2 ∩ 𝑆1 from 𝑆2
• Pick a random set 𝑆3 that contains 𝑒1 but not 𝑒2
• 𝑆2 and 𝑆3 swap 𝑒1 and 𝑒2

𝑼 = 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟏, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟐

𝑺𝟏 = 𝒆𝟐, 𝒆𝟑
𝑺𝟐 = 𝒆𝟐, 𝒆𝟒
𝑺𝟑 = 𝒆𝟒, 𝒆𝟏

Only four positions changes in the query access model.

Modified instance

Swap
Two in ElemOf oracles

+
Two in SetOf oracles

• Median Instance
• Pick two Sets

Uniformly at Random

𝑆1

𝑆2

The Randomized Procedure

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements

that are not covered

The Randomized Procedure

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the

elements that are
covered by both

The Randomized Procedure

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

𝑆1

𝑆2

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

𝑒1 𝑒2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

• Median Instance
• Pick two Sets

Uniformly at Random
• Find the elements that

are not covered
• Also find the elements

that are covered by
both

• Assign one element in
the intersection to
each uncovered
element

• In iteration:
• Find a candidate

set
• swap

The Randomized Procedure

𝑆1

𝑆2

• By Property 2 of median instance:
 the total number of uncovered elements is

𝑂 log𝑚
• Thus in total only 𝑂 log𝑚 positions have

changed.

Overall Argument

Lemma: For any element 𝑒 and any set 𝑆, the probability that pair

participate in a swap is almost uniform, i.e., 𝑂(
log 𝑚

𝑚𝑛
).

• Using other properties of the median instances

Input:
• W.p. ½ the input is the median instance 𝐼∗

• W.p. ½ the input is a randomly generated modified instance 𝐼

Overall Argument

Lemma: For any element 𝑒 and any set 𝑆, the probability that pair

participate in a swap is almost uniform, i.e., 𝑂(
log 𝑚

𝑚𝑛
).

• Using other properties of the median instances

Input:
• W.p. ½ the input is the median instance 𝐼∗

• W.p. ½ the input is a randomly generated modified instance 𝐼

Theorem: Any randomized algorithm that with probability at least
2/3 distinguishes whether the minimum Set Cover size is 2 or at

least 3 requires 𝛀(𝒎𝒏) number of queries.

Open Problems

• Prove a lower bound of Ω(𝑛𝑘) for the set cover problem as well

Problem Approximation Query Complexity Constraints

Set Cover

𝛼𝜌 + 1 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘 𝛼 ≥ 2

𝜌 + 1 𝑂
𝑚𝑛

𝑘
−

𝛼 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

𝛼 Ω
𝑚𝑛

𝑘
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)

Cover Verification − Ω(𝑛𝑘) 𝑘 ≤ 𝑛/2

Open Problems

• Prove a lower bound of Ω(𝑛𝑘) for the set cover problem as well
• Similar results for the weighted set cover?

Problem Approximation Query Complexity Constraints

Set Cover

𝛼𝜌 + 1 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘 𝛼 ≥ 2

𝜌 + 1 𝑂
𝑚𝑛

𝑘
−

𝛼 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

𝛼 Ω
𝑚𝑛

𝑘
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)

Cover Verification − Ω(𝑛𝑘) 𝑘 ≤ 𝑛/2

• Prove a lower bound of Ω(𝑛𝑘) for the set cover problem as well
• Similar results for the weighted set cover?

Open Problems
Problem Approximation Query Complexity Constraints

Set Cover

𝛼𝜌 + 1 𝑂 𝑚
𝑛

𝑘

1
𝛼−1

+ 𝑛𝑘 𝛼 ≥ 2

𝜌 + 1 𝑂
𝑚𝑛

𝑘
−

𝛼 Ω 𝑚
𝑛

𝑘

1
2𝛼

𝑘 ≤
𝑛

log𝑚

1
4𝛼+1

𝛼 Ω
𝑚𝑛

𝑘
𝛼 ≤ 1.01

𝑘 = 𝑂(𝑛/ log𝑚)

Cover Verification − Ω(𝑛𝑘) 𝑘 ≤ 𝑛/2

