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Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C] is minimized
Complexity:
* NP-hard

* Greedy (Inn)-approximation algorithm
e Can’t do better unless P=NP [1Y91][RS97][Fei98][AMS06][DS14]

“Is it possible to solve minimum set cover in sub-linear time?”
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Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, Jj): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Prior Results

= Constant queries, if degree is constant

" Find (1 + €)-approximate fractional solution, then perform
randomized rounding to achieve O (log n)-approximation

= O0(mk? + nk?) (can be improved to 0(m + nk))

n = number of elements m = number of sets  k = size of the optimal solution
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Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets  k = Size of the optimal Solution



Part one: upper bound

4 )
Theorem: There exists an algorithm that with high probability

finds an O(pa)-approximate cover which uses O (mn'/% + nk)
number of queries.

\. .




Part one: upper bound

4 )
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1. Two simple components used for coverage problems in massive data models.
e Set Sampling
* Element Sampling

2. The algorithm overview
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Component I: set sampling

[

Set Sampling: After picking £ sets uniformly at random, all
m logn

elements with degree at least are covered w.h.p.

* We only need to worry about low degree elements.
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Element Sampling: Sampling @(p g ) elements uniformly at

random and finding a p- apprOX|mate cover for the sampled
elements, will cover (1 — &) fraction of the original elements

w.h.p
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Set Sampling: After picking ¢ sets uniformly at random, all elements with degree at
mlogn

are covered w.h.p.
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Cover Verification: given a set system, verify whether a given sub-collection of sets covers
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Theorem: Any randomized algorithm that with probability at least

2/3 distinguishes whether the minimum Set Cover size is 2 or at

least 3 requires Q(mn) number of queries.
\. Y.
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High Level Approach

1. Construct a median instance I*

Minimum Set Cover Size is 3

Randomized Procedure on I* to get a modified instance |

Minimum Set Cover Size is 2
I and I only differ in a few positions
The differences are distributed almost uniformly at

random

~

3. Any algorithm that can detect these two cases requires to
query at least (mn) queries.
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The Median Instance

Construction: is randomized. For every S, e the set S contains e with
9logm

probability 1 — py where py =

n
Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is O(logm)

Take one such instance I* with the above properties
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Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?

* For each uncovered elemente; € U\ (5; US,),
e Add €1 to Sz
* Remove an elemente, € 5, N S; from S,

Pick a random set S5 that contains e; but not e,
S, and S3 swap e; and e,

U= {61, €y, €3, 64} Modified instance

S1 ={ey, e3}
< Swap > S, ={eq,e4}
SS — {34-' 32}
_

Only four positions changes in the query access model.
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The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random

Find the elements that * By Property 2 of median instance:

are not covered » the total number of uncovered elements is
Also find the elements O(logm)

that are covered by * Thus in total only O(logm) positions have

both changed.

Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap
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* Using other properties of the median instances

Input:
* W.p.% theinputis the median instance I*
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least 3 requires Q(mn) number of queries.
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Theorem: Any randomized algorithm that with probability at least
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