Set Cover in Sub-linear Time

Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld
MIT Columbia University MIT/TAU
Ali Vakilian Anak Yodpinyanee

MIT MIT

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C| is minimized

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C] is minimized
Complexity:
* NP-hard

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C] is minimized
Complexity:
* NP-hard

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C] is minimized
Complexity:
* NP-hard

e Can’t do better unless P=NP

Set Cover Problem

Input: Collection F of sets Sy, ..., S,,, each a subset of U =
{1,..,n}
Output: a subset C of F such that:
 CcoversU
* |C] is minimized
Complexity:
* NP-hard

* Greedy (Inn)-approximation algorithm
e Can’t do better unless P=NP [1Y91][RS97][Fei98][AMS06][DS14]

“Is it possible to solve minimum set cover in sub-linear time?”

Sub-linear Time Set Cover

Data Access Model ?

Sub-linear Time Set Cover

Data Access Model (N0'08YYI'12] [Eiof(s, i): ith element in §
SetOf(e, j): jth set containing e

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, j): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, Jj): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, Jj): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Prior Results

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, Jj): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Prior Results

= Constant queries, if degree is constant

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, j): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Prior Results

= Constant queries, if degree is constant

" Find (1 + €)-approximate fractional solution, then perform
randomized rounding to achieve O (log n)-approximation

Sub-linear Time Set Cover

Data Access Model EItOf(S, i): ith elementin §
* No assumption on the order SetOf(e, Jj): jth set containing e
* Incidence list in (sub-linear) algorithms for graphs
* Sublinear in mn

Prior Results

= Constant queries, if degree is constant

" Find (1 + €)-approximate fractional solution, then perform
randomized rounding to achieve O (log n)-approximation

= O0(mk? + nk?) (can be improved to 0(m + nk))

n = number of elements m = number of sets k = size of the optimal solution

Results
_1

ap + 1 a =2 0 (m (E)“‘l n nk)
k

Set Cover

Cover Verification

p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
_1

ap + 1 a =2 0 (m (2)“‘1 n nk)
k

Set Cover 1 1

4a+1 2a
logm k

Cover Verification

p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
_1

ap + 1 a =2 0 <m (2)“‘1 n nk)
k
Set Cover 1 1
4a+1 2
JEREES O
logm k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
_1

ap + 1 a =2 0 <m (2)“‘1 n nk)
k
+1 0 (mn)
P k
Set Cover 1 1
4a+1 2
JERETES O
logm k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
_1

ap + 1 a =2 0 <m (2)“‘1 n nk)
k
+1 0 (mn)
P k
Set Cover 1 1
4a+1 2
SRS
logm k
o a <101 ~ (@)
k=0(n/logm) k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
Approximation Constraints Query Complexity

ap + 1

Set Cover
o a <101 a (m)
k=0(n/logm) k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Results
Approximation Constraints Query Complexity

1
ap +1 = i nk)
+1 0 (mn)
P k
Set Cover 1 1
4a+1 2
)T g
logm k
o a <101 a (@)
k=0(n/logm) k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Part one: upper bound

4)
Theorem: There exists an algorithm that with high probability

finds an O(pa)-approximate cover which uses O (mn'/% + nk)
number of queries.

\. .

Part one: upper bound

4)
Theorem: There exists an algorithm that with high probability

finds an O(pa)-approximate cover which uses O (mn'/% + nk)
number of queries.

\. .

1. Two simple components used for coverage problems in massive data models.
e Set Sampling
* Element Sampling

2. The algorithm overview

Component I: set sampling

4 h

Set Sampling: After picking £ sets uniformly at random, all
mlogn

?
 We only need to worry about low degree elements.

e/

elements with degree at least are covered w.h.p.

Component I: set sampling

4 h

Set Sampling: After picking € sets uniformly at random, all
mlogn

?
 We only need to worry about low degree elements.

i How we use the lemma: set £ = 0 (k) I

elements with degree at least are covered w.h.p.

Component I: set sampling

[

Set Sampling: After picking £ sets uniformly at random, all
m logn

elements with degree at least are covered w.h.p.

* We only need to worry about low degree elements.

\.

£ =2
OO OO W

Component I: set sampling

[

Set Sampling: After picking £ sets uniformly at random, all
m logn

elements with degree at least are covered w.h.p.

* We only need to worry about low degree elements.

\.

£ =2
0
2

Degrees: 2

Component I: set sampling

4)
Set Sampling: After picking £ sets uniformly at random, all
m logn

elements with degree at least are covered w.h.p.

* We only need to worry about low degree elements.

——

£ =2
0
2

Degrees: 2

Component I: set sampling

[

Set Sampling: After picking £ sets uniformly at random, all
m logn

elements with degree at least are covered w.h.p.

* We only need to worry about low degree elements.

\.

@ & (8 10)
Degrees: 1 1 1 2

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

8,2,9,10

i
S
©
t
©

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

8,2,9,10

:
N
©
t
S

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

 NON NONORON NONCN

B DO W D> BIO>TL > D> >

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

 NON NONORON NONCN

C13 > 10 D> 37 > T D> 7 > 10 D

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

@O0 L OO O ®

C13 > 10 D> 37 > T D> 7 > 10 D

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

8,2,9,10

i
O
®
t
©

Component Il: element sampling

-

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component Il: element sampling

4 -)
Element Sampling: Sampling @(p g) elements uniformly at

random and finding a p- apprOX|mate cover for the sampled
elements, will cover (1 — &) fraction of the original elements

w.h.p

Algorithm

@ke a guess ¥ of the value of the optimal solution k

Algorithm {

logn different guesses
?€{1,24,..,n}

N\
@ke a guess ¢ of the value of the optimal solution k

?€{1,24,..,n}

Algorithm {

logn different guesses J

@ke a guess ¢ of the value of the optimal solution k
J Preprocessing: perform set sampling
d Sol « sampled sets

Algorithm

logn different guesses
?€{1,24,..,n}

@ke a guess ¢ of the value of the optimal solution k

O Preprocessing: perform set sampling sample £ sets,

number of queries: nf

d Sol « sampled sets

7

Set Sampling: After picking ¢ sets uniformly at random, all elements with degree at
mlogn

are covered w.h.p.

least

logn different guesses
£ €{1,24,..,n}

Algorithm J

@ke a guess £ of the value of the optimal squtionm
Preprocessing: perform set sampling

Sol « sampled sets \
For « iterations

number of queries: nf

P
sample ¥ sets,]

coC

. 1
 Use element sampling to cover (1 — nl/“)-

fraction of the uncovered elements.
e Add the sets to Sol

-

logn different guesses
?€{1,24,..,n}

Algorithm J

@ke a guess ¢ of the value of the optimal solution k
J Preprocessing: perform set sampling

d Sol « sampled sets \
O For «a iterations

P
sample ¥ sets,
number of queries: nf

, 1
 Use element sampling to cover (1 — nl/“)-

fraction of the uncovered elements.
e Add the sets to Sol

5 =1/nl/@

(

Element Sampling: Sampling @(pk logm

) elements uniformly at random and finding a p-

)
approximate cover for the sampled elements, will cover (1 — &) fraction of the original

elements w.h.p.

logn different guesses
?€{1,24,..,n}

Algorithm J

@ke a guess ¢ of the value of the optimal solution k N
J Preprocessing: perform set sampling
d Sol « sampled sets

d For « iterations

sample ¥ sets,

number of queries: nf
\§ J

~

sample (p#n'/%logm)
elements,
number of queries:

0 (pfnl/“ logm = log n)

¢
/a logmlogn)/

1
nl/a)

 Use element sampling to cover (1 —

fraction of the uncovered elements.
e Add the sets to Sol

=0(pmn

— 1/a
e 6=1/n

pklogm

Element Sampling: Sampling O() elements uniformly at random and finding a p-

)
approximate cover for the sampled elements, will cover (1 — &) fraction of the original

elements w.h.p.

Algorithm

@ke a guess £ of the value of the optimal squtionm
Preprocessing: perform set sampling
Sol « sampled sets

For « iterations

coC

1
nl/a)_

 Use element sampling to cover (1 —

fraction of the uncovered elements.
e Add the sets to Sol
e Update uncovered elements.

—

P
logn different guesses
£ €{1,24,..,n}

N
sample ¥ sets,

number of queries: nf
\§ J

4 N

sample (pn'/%logm)
elements,
number of queries:

0 (pfnl/“ logm= lzg n)

=0(pmnt/*logmlogn
\ (p gmlog)/

Algorithm

logn different guesses
£ €{1,24,..,n}

@ke a guess £ of the value of the optimal squtionm

~N

1
nl/a)_

 Use element sampling to cover (1 —

fraction of the uncovered elements.
e Add the sets to Sol

O Preprocessing: perform set sampling sample ¢ sets, -

number of queries: nf
d Sol « sampled sets \ J
O For « iterations 4 N\

sample (pn'/%logm)
elements,
number of queries:

0 (pfnl/“ logm= lzg n)

* Update uncovered elements. =0(pmn'/*logmlogn)
\ %
number of queries: pnf]

Algorithm

@ke a guess £ of the value of the optimal squtionm
J Preprocessing: perform set sampling
d Sol « sampled sets

d For « iterations
1
nl/a)_

 Use element sampling to cover (1 —

fraction of the uncovered elements.
e Add the sets to Sol
e Update uncovered elements.

\ If all elements are covered, report Sol /

P
logn different guesses
£ €{1,24,..,n}

N
sample ¥ sets,

number of queries: nf
\§ J

4 N

sample (pn'/%logm)
elements,
number of queries:

0 (pfnl/“ logm= lzg n)

=0(pmnt/*logmlogn
\ (p gmlog)/

[number of queries: pnf]

Algorithm

@ke a guess £ of the value of the optimal solutionm
Preprocessing: perform set sampling
Sol « sampled sets

For «a iterations

coC

1
nl/a)_

 Use element sampling to cover (1 —
fraction of the uncovered elements.

 Add the sets to Sol
e Update uncovered elements.
If all elements are covered, report Sol

P
logn different guesses
?€{1,24,..,n}

N
sample ¥ sets,

number of queries: nf
\§ J

4 N

sample (pn'/%logm)
elements,
number of queries:

0 (pi’nl/“ logm= lzg n)

=0(pmnt/*logmlogn
\ (p gmlog)/

[number of queries: pnf]

(
Theorem: There exists an algorithm that with high probability

finds an O(pa)-approximate cover which uses 0 (mn'/# + nk)
number of queries.

Results
Approximation Constraints Query Complexity

ap + 1

Set Cover
o a <101 a (m)
k=0(n/logm) k
Cover Verification — k<n/2 Q(nk)

Cover Verification: given a set system, verify whether a given sub-collection of sets covers
the universe.
p = approximation factor for offline Set Cover

n = number of elements m = number of sets k = Size of the optimal Solution

Part two: lower bound

4)
Theorem: Any randomized algorithm that with probability at least

2/3 distinguishes whether the minimum Set Cover size is 2 or at

least 3 requires Q(mn) number of queries.
\. Y.

High Level Approach

(Construct a median instance I

Minimum Set Cover Size is 3

High Level Approach

1. Construct a median instance I"*
* Minimum Set Cover Size is 3
2. Randomized Procedure on I to get a modified instance [
* Minimum Set Cover Size is 2
 ["and I only differ in a few positions
 The differences are distributed almost uniformly at
random

High Level Approach

1. Construct a median instance I*

Minimum Set Cover Size is 3

Randomized Procedure on I* to get a modified instance |

Minimum Set Cover Size is 2
I and I only differ in a few positions
The differences are distributed almost uniformly at

random

~

3. Any algorithm that can detect these two cases requires to
query at least (mn) queries.

The Median Instance

Construction: is randomized. For every S, e the set S contains e with
9logm

probability 1 — py where py =

n

The Median Instance

Construction: is randomized. For every S, e the set S contains e with
9logm

probability 1 — py where py =

n
Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements

The Median Instance

Construction: is randomized. For every S, e the set S contains e with
9logm

probability 1 — py where py =

n
Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is O(logm)

The Median Instance

Construction: is randomized. For every S, e the set S contains e with
9logm

probability 1 — py where py =

n
Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is O(logm)

Take one such instance I* with the above properties

Sets

The Median Instance

Elements

ees

e &S

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?

U= {31; €2,€3, 64_}

S1 ={e;, e3}
SZ — {eZJ 64}

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

U= {31; €2,€3, 64}

51 =1{ez, e3}
S, ={ez, ey} ~ eq

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

* Remove an elemente, € 5, N S; from S,

U= {31; €2,€3, 64}

51 =1{ez, e3}
S, ={ey ey} ~ eq

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

* Remove an elemente, € 5, N S; from S,

* Pick arandom set S5 that contains e; but not e,

U= {31; €2,€3, 64}
S1=1{e; e3}

Sz — {ez, 64}
S3 — {341 el}

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

* Remove an elemente, € 5, N S; from S,

* Pick arandom set S5 that contains e; but not e,

* S, and S; swap e; and e,

U= {31; €3,€3, 64}
51 =1{ez, e3} S1 =1ey, e3}

S, ={e;, e4} S, ={eq,eq4}
S3 ={es e} S3 = {ey, e}

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

* Remove an elemente, € 5, N S; from S,

* Pick arandom set S5 that contains e; but not e,

* S, and S; swap e; and e,

U= {61, €y, €3, 64} Modified instance

S1 =1{ez e3} S1 = {ey, es}
Sz =1{e2, €4} < Swap > S2 =1{e1,e4}

S3 ={es e} S3 = {ey, e}

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?
* For each uncovered elemente; € U\ (5; U S,),

* Adde;to S,

* Remove an elemente, € 5, N S; from S,

* Pick arandom set S5 that contains e; but not e,

* S, and S; swap e; and e,

U= {61, €y, €3, 64} Modified instance

S1=1{e; e3} S1=1{ez,e3}
Sz =1{e2, €4} < Swap > S2 =1{e1,e4}

S3 ={es e} S3 = {ey, e}

Only four positions changes in the query access model.

Generating a Modified Instance

Pick two random sets S; and S, and turn them into a set cover.
How?

* For each uncovered elemente; € U\ (5; US,),
e Add €1 to Sz
* Remove an elemente, € 5, N S; from S,

Pick a random set S5 that contains e; but not e,
S, and S3 swap e; and e,

U= {61, €y, €3, 64} Modified instance

S1 ={ey, e3}
< Swap > S, ={eq,e4}
SS — {34-' 32}
_

Only four positions changes in the query access model.

e Median Instance
* Pick two Sets

The Randomized Procedure

Uniformly at Random

e Median Instance
* Pick two Sets

* Find the elements

The Randomized Procedure

Uniformly at Random

that are not covered

e Median Instance
* Pick two Sets

* Find the elements that

* Also find the

The Randomized Procedure

Uniformly at Random
are not covered

elements that are
covered by both

The Randomized Procedure

Median Instance

Pick two Sets
Uniformly at Random
Find the elements that
are not covered

Also find the elements
that are covered by
both

Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

Median Instance

Pick two Sets
Uniformly at Random
Find the elements that
are not covered

Also find the elements
that are covered by
both

Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

Median Instance

Pick two Sets
Uniformly at Random
Find the elements that
are not covered

Also find the elements
that are covered by
both

Assign one element in
the intersection to
each uncovered
element

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random
Find the elements that
are not covered
Also find the elements
that are covered by
both
Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

The Randomized Procedure

Median Instance
Pick two Sets
Uniformly at Random

Find the elements that * By Property 2 of median instance:

are not covered » the total number of uncovered elements is
Also find the elements O(logm)

that are covered by * Thus in total only O(logm) positions have

both changed.

Assign one element in
the intersection to
each uncovered
element
In iteration:

* Find a candidate

set
* swap

Overall Argument

/Lemma: For any element e and any set S, the probability that pair
logm

mn).
* Using other properties of the median instances

participate in a swap is almost uniform, i.e., O(

Input:
* W.p.% theinputis the median instance I*
(W.p. % the inputis a randomly generated modified instance |

~N

Overall Argument

/Lemma: For any element e and any set S, the probability that pair
log m)

participate in a swap is almost uniform, i.e., O(—

* Using other properties of the median instances

Input:
* W.p.% theinputis the median instance I*
(W.p. % the inputis a randomly generated modified instance |

~N

J

r

least 3 requires Q(mn) number of queries.
_

Theorem: Any randomized algorithm that with probability at least
2/3 distinguishes whether the minimum Set Cover size is 2 or at

~N

)

Open Problems
1

ap + 1 5<m (%)m_l_nk) @32
- /mn
Pt o(%))
Set Cover 1)
a " n\a n \4a+1
Qlm (E) (= <logm>
~ (Mn a <101
a Q) (T) k = 0(n/logm)
Cover Verification — Q(nk) k<n/2

* Prove a lower bound of 2(nk) for the set cover problem as well

Open Problems
1

ap + 1 0<m (%)m_l_nk) @32
_/mn
Pt o(%))
Set Cover 1)
a " n\a n \4a+1
Qlm (E) (= (logm)
~ (Mn a <101
a Q) (T) k = 0(n/logm)
Cover Verification — Q(nk) k<n/2

* Prove a lower bound of 2(nk) for the set cover problem as well
e Similar results for the weighted set cover?

Open Problems

+1 0 (mn>
a K
Set Cover 1)
~ n\z2a Fa+T
@ Q\m (E) = (lon)
~ (Mn a <101
a Q (T) k = 0(n/logm)
Cover Verification — Q(nk) k<n/2

* Prove a lower bound of 0(nk) for the set cover problem as well
e Similar results for the weighted set cover?

